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We argue that extended saddle points observed at the Fermi level for optimally doped super-
conductors are essentially the bifurcated saddle points predicted by density-functional [local density
approximation (LDA)] calculations. Such saddle points are caused by the dimple of the CuO;
planes and are enhanced by plane-plane hopping. Dimpling may provide a mechanism for pinning
the Fermi level to the saddle points. Simple tight-binding Hamiltonians and analytical expressions
for the constant-energy contours are derived from the LDA bands of YBazCu3O~7. In addition o
the usual O2 , O3 y, and Cu z2- y? orbitals, we find that O2 z and O3 z are crucial and Cu s, zz,
and yz important. The O z orbitals allow the pdo antibond to tilt with the dimple.

I. INTRODUCTION

One of the surprises in high-temperature superconduc-
tivity research is that it has been possible to map out
band structures of several high-temperature supercon-
ductors (HTSC’s) using angle-resolved photoemission,!™*
that the Fermi surfaces (FS’s) agree in detail with
the predictions of density-functional [local density ap-
proximation (LDA)] theory,®® and that the velocity-
renormalizations are less than about 3.

In particular, the Fermi levels of double-plane mate-
rials like YBayCuzO; and YBay;Cu,0g with near op-
timal doping seem to be within 30 meV of anomalous
saddle points positioned near (kya/w,kyb/7)=(1,0) and
(0,1). With the appropriate transformation of axes, this
holds for BiaSrzCaCuzQOsgts, too. As regards the na-
ture of the saddle-point anomaly, the LDA prediction®
was that the saddle points are bifurcated, away from the
high-symmetry positions, to the positions (1+Ak,0)w/a
and (0,1+Ak)w/b with Ak = 0.3. The constant-energy
contour through the saddle points therefore behaves like
the circles in Fig. 1, rather than in the conventional
way indicated by the straight (dashed) lines. Angle-
resolved photoemission* now yields that the band has an
anomalously flat (k*-like), downwards dispersion towards
(0,0) and a normal (k*-like), upwards dispersion towards
(1,1); in other words, that Ak — 0 so that the circles
in the schematic Fig. 1 touch at the high-symmetry
points (1,0) and (0,1). This kind of saddle point is called
extended.* The slight discrepancy in the degree of bifurca-
tion between the predicted, Ak = 0.3, and the measured,
Ak — 0, is hardly surprising considering the facts that
the LDA neglects electronic correlations and photoemis-
sion probes only the surface region.

The band with the saddle points near e is that an-
tibonding pdo-like plane band whose wave functions are
odd (o) with respect to the mirror plane between the
two neighboring CuO; planes. For YBay;CuzOr, angle-
resolved photoemission” also confirms the LDA predic-
tion (Fig. 2) for the even (e) antibonding pdo-like plane
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band, positron annihilation® confirms the prediction for
the FS sheet from the antibonding pdo-like chain band
(c), and de Haas-van Alphen experiments® seem to con-
firm the LDA prediction'®!? for the so-called stick sheet
(s) of the FS which arises from the uppermost pdn-like
chain band. Figure 2 exhibits the cross sections of the
LDA FS and the neighboring constant energy surfaces

FIG. 1. FS of an optimally doped high-temperature super-
conductor (schematic). The FS passes through saddle points
which are bifurcated by 2Ak. For Ak — 0, the circles (cylin-
ders) would touch at the high-symmetry points (1,0) and
(0,1), in which case the saddle points would have k* disper-
sion in the [10] or [01] directions (but the usual k* dispersion
in the perpendicular direction), i.e., they would be extended.
For YBazCu3Og.92, the corresponding FS sheet would be the
one for the odd plane band. In the LDA for YBa3CuszOv, this
band has considerable k, dispersion due to interaction with
the chain bands. The interaction with the dominant chain
pdo band, however, vanishes by symmetry when k,=0, and
the corresponding LDA contour for the saddle-point energy
resembles the intersecting circles [see (0,0)-contours in the left
part of Fig. 2], in particular if also the interaction with the
chain pdm band could be neglected. The dashed lines show a
FS passing through the saddle points of a band with normal
k2 — k dispersion.
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FIG. 2. LDA FS and constant energy surfaces correspond-
ing to € = er £ 30 meV for YBa,CuszOv, calculated with
the FP LMTO method. The FS has four sheets, the plane
pdo-like odd (o) and even (e) sheets, and the chain pdo (c)
and pdmw (s) sheets. Shown are the cross sections with the
k.=0 and 7/c planes. The cross sections in the left part of
the figure are those which do not hybridize with the (¢) band.

(30 meV) with the k, = 0 and 7/c planes. We shall
return to this figure several times (and shall also explain
the reason for splitting the contours into a left and right
figure). ]

Many, if not all, anomalous properties of the HTSC’s
near optimal doping are consistent with a scenariol?13
with the Fermi level close to a (normal) saddle point in
a two-dimensional (2D) band structure (e o k2 — k2).
At optimal doping, er is at the saddle point and this
yields a logarithmic van-Hove singularity in the density
of states and a singularity in Imy (q,w), for w small and
q sliding along the flat part of the FS.'27'* If present,
such phase-space effects would also be favorable for an
electronic pairing mechanism and, together, these two
features could explain the small isotope effect at optimal
doping.!®> Now, the existence of extended saddle points
(i.e., k* rather than k? dispersion in one of the direc-
tions), would enhance the phase space effects,'® or even
make an excitonic mechanism for HTSC a realistic possi-
bility. At the least, it could partly compensate for a finite
dispersion in the third space direction, if present. The
LDA predicts considerable k, dispersion for YBayCu3zO7,
in particular near the saddle points, where it is caused by
coupling through the chain bands. This may be seen from
Fig. 2. The three-dimensional, bifurcated LDA bands do
not give rise to a spectacular singularity in the density of
states,® but decreasing the bifurcation to zero as hinted
by the photoemission experiment would sharpen up the
3D van Hove singularities.

In addition to a 30 meV gap in the spin-fluctuation
spectrum, neutron scattering on YBayCuzO7_, exhibits
a strong peak at (gza/m, gyb/m)=(1,1) and w=41 meV,*”
whose width Ag increases with the hole doping n,.1® This
is consistent with the NMR. data, but not with the LDA
prediction of x" (q,w),%1® which has no commensurate
(1,1) peak because € is ~20 meV above both saddle
points, and because the minima at the high-symmetry
points are not sufficiently shallow. A small adjustment
of this band and its Fermi level would, however, bring
them into agreement with the situation sketched in Fig.
1, where the flat band in the (1,0) segment “nests” onto
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the one in the (0,1) segment. This adjustment also makes
the band structure consistent with the observed uniaxial
pressure dependence of T.,2° which indicates that the
(1,0) saddle is slightly above, and the (0,1) saddle slightly
below €r. A curious observation is that whereas heavy
doping has made the spin-fluctuation coherence length
short inside the planes, the coupling between two planes
remains strong and antiferromagnetic.'® We shall return
to this point at the end of the paper.

The LDA bands in Ref. 6 prove that the degree of cal-
culated bifurcation (Ak) is controlled by the dimple of a
CuO;, plane, which is a displacement in the perpendicular
direction of the oxygens with respect to the copper. In
YBa;CuzOy7, this oxygen displacement in the ¢ direction
is towards the neighboring CuQ; plane, and it amounts
to 0.064a =~ 0.25 A for the O2 rows (in the a direction)
and to 0.070a for the O3 rows. Figure 3 displays two
LDA electronic band structures® calculated with respec-
tively increased (full line) and decreased (dashed line)
dimplings by +0.03a. The bands are for k&, = 0 and
(kga/m, kyb/m) along the high symmetry lines from T’
(0,0) to X (1,0), to S (1,1) to Y (0,1), back to I and,
finally, along the [1,1] diagonal to S. The bifurcated sad-
dle points are seen as one maximum along I'X and one
along T'Y. In Ref. 6 also the adiabatic bands for the cor-
responding copper mode are shown, and they are nearly
identical to those in Fig. 3, except for an exchange of
the full and dashed lines. Clearly, with decreasing dim-
ple, the bifurcation Ak decreases and the saddle point
becomes extended (Ak — 0) for a critical value of the
dimple which, as judged from the figure, lies between
0.040a and 0.034a in 'YBap;CuzOy. For even smaller val-
ues of the dimpling, in particular for a completely flat
plane, the saddle points are at X and Y, and the disper-
sion is quadratic (< k? in all directions). The ab initio
LDA frozen-phonon calculations of which Fig. 3 is a by-
product, reproduce within 10% the size of the dimpling
in YBay;CuszOyv, as well as the frequencies of the dimpling
modes,®?' 723 which have been studied extensively with
Raman scattering (Cu2: 150 cm™!, 03—02: 330 cm™?,
and 03+02: 440 cm~1).2425 BEven the calculated cou-
pling of these modes to electrons in the superconducting
state (A & 1) agree well with Raman-scattering results.?®

If the Fermi level is really within 30 meV, i.e., phonon
energies, of the saddle points, the high 7. might be ex-
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FIG. 3. Adiabatic LDA energy bands for the in-phase dim-
pling mode (440 cm™!) in YBa;Cuz0r. The full (dashed)
bands are for increased (decreased) dimpling with oxygen dis-
placements of 0.03a. The self-consistent calculations were per-
formed with the FP LMTO method and 147 points in the
irreducible zone. The Fermi level is the zero of energy.
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plained by the electron-phonon mechanism with A ~1 be-
cause this violation of Migdal’s theorem invalidates the
usual Eliashberg theory. Recent studies?” indicate that
such nonadiabatic effects tend to increase T, and to yield
an anomalous behavior of the isotope effect, as observed.

It could seem as if, for doping levels within a certain
range, the dimpling would adjust itself so as to pin the
bifurcated saddle points to the Fermi level: This range of
optimal doping would then set in when the saddle points
at ep become extended, and would continue through
some range of bifurcations. Since the FS sheets pass-
ing through thé saddle points are, to a first approxima-
tion, intersecting circles (Fig. 1 ), the relation between
the optimal number of holes i, (in excess of 1) and the
bifurcation Ak is approximately

7in (Ak) ~ ?23 [1 + (Ak)z] —1-2(Ak)® (1)

with Ak in units of 7/a, and where the last term is the
number of holes in the segments between the bifurcated
saddle points. The onset of optimal doping would thus
be at #ip (0) ~ -1 ~ 0.6 holes per double plane in the
odd F'S sheet. Since the LDA calculations show that the
even sheet is approximately half full (see Fig. 2), es-
sentially all the doped holes go into the odd sheet, and
this means that the total number of holes at the onset
of optimal doping is ~0.6, provided that there is no k,
dispersion. The LDA, however, gives considerable disper-
sion for YBayCuz Oz, in particular near the saddle points,
as seen in Fig. 2, so that the area inside the k, = m/c
contour of the odd plane sheet is only about half the 2D
Brillouin zone. This means that for the 3D LDA bands,
the right-hand side of Eq. (1) should be divided by ~2.
With 3D bands, the onset of optimal doping thus takes
the more conventional value: iy (0) ~0.28 holes per dou-
ble plane, and the doping corresponding to the LDA bi-
furcation for YBay;Cu3Oy is s (0.3) ~0.33 per double
plane.

It thus seems important to study in detail the impli-
cations for superconductivity of extended or slightly bi-
furcated saddle points close to the Fermi level. With the
many ideas around, there is a lot to be done. In the
present paper we shall therefore hunt the electronic de-
grees of freedom which enable the bifurcation: Based on
analysis of the LDA bands for YBa;Cu3zO7, we derive a
simple tight-binding model with an analytical expression
for the FS. This model gives an LDA realistic description
of the bifurcation for double, as well as for single CuO;
layers, and we find that the most important electronic
degrees of freedom, in addition to the usual O2 z, O3
v, and Cu z?-3? orbitals, are the plane-oxygen z orbitals
which allow the pdo antibond to. tilt with the dimple.
Our model contains the hopping interaction between the
two planes but we deliberately avoid the hopping through
the chain, which is specific for YBa;Cu3O7_, materials
and which might be prohibited by scattering, anyhow.
The model is therefore basically 2D but, if wanted, it is
an easy task to reinstall k, dispersion in the odd and
even planelike bands by fitting also to the contours in
the right part of Fig. 2. It is our hope that the model
will be used in the future for the single-particle terms
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in more sophisticated Hamiltonians containing, for in-
stance, the Coulomb correlations, the phonons, and the
electron-phonon interaction. Presently we are working on
providing the parameters for the latter. Towards the end
of the paper (Sec. V), we give a tutorial on the develop-
ment of the constant energy surfaces as functions of the
band ﬁlhng and the various physical parameters. In Sec.
VI, we give the simplest possible translationally invari-
ant mathematical model for the constant energy surfaces
near the Fermi energy of a dimpled plane.

II. ANALYSIS OF THE LDA BANDS
A. LDA Fermi surface for YBa;CusOr

In Fig. 2 we show cross sections of the LDA Fermi
surface and adjacent (+30 meV) constant-energy sur-
faces for YBayzCuzOr with the k,=0 and w/c symme-
try planes.®:2%11 Ag specified in Refs. 21, 6, 11, and 23,
these constant-energy contours (CEC’s) were calculated
with the highly accurate full-potential linear muffin tin
orbital (FP LMTO) method using ~800 first-principles
points in the irreducible part of the Brillouin zone and
147 points in the self-consistency cycle. We now first de-
scribe this LDA FS and then fold down remote orbitals
(e.g., Y, Ba, Cu sp, O s), remove the Cu dand O p chain
orbitals, and analyze the pure plane sheets quantitatively.

The left panel shows those CEC’s which do not hy-
bridize with the dominant chain pdo band (c); they be-
long to the odd (o) plane sheet for k,=0, to the even (e)
plane sheet for k,=n/c, and to the uppermost chain pdm
band (the stick, s) for k,=0 and w/c. As mentioned in
the Introduction, for the plane bands, odd and even refer
to the character of the wave functions with respect to the
mirror plane perpendicular to the ¢ axis and between the
planes, through the yttrium atoms. The wave functions
of the chain pdo and pdm bands are respectively even
and odd with respect to the mirror plane perpendicular
to the ¢ axis and containing the chains. Now, the stick
band lies well below the plane bands except along the I'S
[1 1} line (see Fig. 3) where it pushes them up slightly and
gives rise to the “wiggles” seen in the (0,0) and (e,7/c)
contours in the left panel of Fig. 2. Apart from this, the
plane states (0,0) and (e, /c) do not hybridize with chain
states. The (0,0) CEC’s clearly exhibit saddle points less
than 20 meV below ep at the points (k,,,O) and (0 ky)
Since the (7/a, ky, k;) and (kz,7/b,k,) - planes are mir-
rors, these saddle points are bifurcated away from the
symmetry positions (w/a,0) and (0,7 /b). As mentioned
above, the area inside the (e,n/c) CEC is slightly less
than half the area of the 2D Brillouin zone and it is as
if the (0,0) CEC has taken up slightly more than all the
holes prov1ded by the chain. The e sheet also has bi-
furcated saddle points for k,=7/c, but they are 0.8 eV

below the Fermi level.

In the right panel of the figure we show the chain pdo
sheet (¢) and those plane CEC’s (o, TI'/C) and (e,0) which
interact with it. Near e¢p, the ec mixing is weak and
the oc mixing strong. In both cases, however, the saddle
points are outside the +£30 meV range. The e sheet,
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in fact, has bifurcated saddle points for k,=0 at 0.7 eV
below €F, and the o sheet has bifurcated saddle points for
k,=m/c at 0.4 eV below the Fermi level. The c sheet has
a nonbifurcated saddle point at k=(w/a,0,r/c) merely
80 meV above ep with considerable o character.

Due to this rather strong k, dispersion of the LDA
bands, the van Hove singularities near the Fermi level
are three-dimensional and not prominent. In this paper,
- we are not interested in the specifically chain-related fea-
tures and we shall therefore not consider the k, disper-
sion further. What are of interest are the odd and even
plane-band contours in the left panel, released from the
influence of the chain derived stick band.

B. Breaking down of the h&nd‘structure

In order to analyze these bands quantitatively, we
are forced to use the LMTO method in the atomic-
spheres approximation (ASA) because this is presently
the only scheme which employs a first-principles tight-
binding representation and which provides an accurate
way of downfolding orbitals.2® However, with carefully
chosen sphere sizes, the ASA bands are quite close to
those calculated with the full-potential version, as for in-
stance a comparison of the CEC’s in the left panels of
Figs. 2 and 7 demonstrates (these two figures should, in
fact not be quite identical, because the influence of the
stick band has been deliberately removed from the bands
in Fig. 7). The downfolding now starts with an ezact
transformation to a representation in which the tails of
the orbitals, which are to remain in the basis, e.g., 02 z,
are radial Schrédinger-equation solutions at one energy,
chosen at the center of interest (here €r), for the channels
to be downfolded, e.g., Y d. After this transformation,
the orbitals corresponding to the downfolded channels
are removed from the basis. The remaining orbitals are
energy independent, but not necessarily orthogonal or
short ranged.

In Fig. 4(a) we show the LMTO-ASA band structure
for k,=0 along the triangle (k,a/m, kyb/7) = (0,0)-(1,0)-
(1,1)-(0,0) in a 4 eV range around the Fermi level. The
band structure is nearly identical with the average be-
tween the two full-potential band structures shown in
Fig. 3 [note that the third panel in Fig. 4(a) shows the
ST and not the SY direction as in Fig. 3]. The band
structure consists of the antibonding pdo chain (¢) band,
and the pdo even (e) and odd (o) plane bands rising above
the top of the Cu d- O p complex. The o band of course
lies above the e band. As mentioned above, the o band
does not hybridize with the ¢ band, and its (1,0) sad-
dle point is clearly bifurcated to (140.3,0). Figure 4(b)
shows the bands along the same triangle in the k,=n/c
plane where now o and ¢, but not e and ¢, mix. This hy-
bridization with the chain band pushes the saddle point
of the o band to (1,0,1), i.e., it removes the bifurcation
in this zone-boundary plane. The calculations in Figs.
4(a) and 4(b) were performed with the Cu sp-, the O s-
and d-, the Ba and Y spdf, and all interstitial-sphere
channels folded down. The basis thus included only the
Cu d and the O p orbitals. In the energy range shown,
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this had no visible effects.

In the following Figs. 4(c)-4(j), we removed (without
down folding) all remaining orbitals except plane Cu z?-
¥?, 2z, and zy, plane O2 z and z, and plane O3 y and
z. These 2X7 orbitals are centered ezclusively on the
two planes so that the k, dispersion is removed and the
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FIG. 4. Breaking up of the YBaxCu3zO7 band structure.
These LDA calculations were performed with the LMTO ASA
method and various basis sets. (a) (k,=0) and (b) (k.=n/c):
Accurate downfolded (O p, Cu d) basis. Left panels (c), (e),
(g), and (i): Odd (o) linear combinations. Right panels (d),
(f), (h), and (j): Even (e) linear combinations. (c) and (d):
Hybridized pdo and pdn bands, i.e., the basis included the 02
z, z, 03 y, z, Cu 2*-3?, 2z, and zy LMTO’s. (e) and (f): Pure
pdo bands, i.e., the basis included the O2 z, O3 y, and Cu
z?-y* LMTO’. (g) and (h): Pure pdr bands, i.e., the basis
included the 02 z, O3 2, and Cu 2z, zy LMTO’s. (i) and (j):
Pure oxygen z bands, i.e., the basis included the O2 zand O3
z orbitals.

\

(0,0) (0,0)
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states are strictly odd or even with respect to the mir-

ror plane through yttrium. The bands calculated (using

the original LDA ASA potential) with odd linear combi-
nations of these orbitals are shown in the figures to the
left (c, e, g, and i) and those calculated with even linear
combination are shown in the figures to the right (d, f,
h, and j).

Figures 4(c) and 4(d) result from calculations with all
7 odd or all 7 even orbitals in the basis. Apart from a
0.4 eV energy shift, the (uppermost) o band in Fig. 4(c)
is very nearly identical to that resulting from the more
complete calculation in Fig. 4(a) and, hence, to that of
the FP-LMTO calculation in Fig. 3. The same holds
for the (uppermost) e band in Fig. 4(d) compared with
Fig. 4(b) where, at (1,0), the e band is the fourth from
the top. In particular, the saddle points of both bands
are bifurcated, but to different extents. We would like to
point out, that inclusion of the Cu 322-1 and apical O 2
orbitals handly influenced the dispersion of the o and e
bands and, as a consequence, we left them out. It is at the
level of Figs. 4(c) and 4(d), that we want to reproduce
the LDA bands with a simple but physical tight-binding
model.

We now remove further orbitals. In Figs. 4(e) and 4(f),
the Cu 2z, and zy, and the O z orbitals were removed.
The remaining basis is thus the pdo orbitals of the usual
3-band model, albeit for two planes and using carefully
constructed ab initio orbitals. The characters of these
three bands are thus antibonding CuO, nonbonding O,
and bonding CuO. The latter band is mostly below the
frame of the figure. The interplane coupling, measured
as the shift between the o and e bands, is about 0.5 eV at
(1,0) and nearly vanishes along the (0,0)-(1,1) line. This
interplane hopping is due to the Cu s character which has
been folded into the tails of the O2 z and O3 y orbitals.
A calculation without folding the Cu s orbitals down,
but keeping them explicitly in the basis, revealed that
their energies are 4.8 eV (o) and 3.5 eV (e) at the T’
point. That the Cu s character dominates over the 322-1
character, which has the same symmetry in the plane but
pushes the saddle pomts up rather than down in energy,
can be seen from the || plots in Fig. 3 of Ref. 6 and in
Figs. 3(b) and 4 of Ref. 11. A schematic picture of the
Cu s hybridized pdo orbitals at (1,0) and (0,1) are given
in the upper part of Fig. 5.

Figures 4(g) and 4(h) display the pdm bands obtained
exclusively with those orbitals removed from the 7 set
to obtain the 3-band results of Figs. 4(e) and 4(f); these
orbitals are 02 z, O3 z, Cu 2z, and zy. Comparison of the
superpositions of Figs. 4(g) and 4(e), and of Figs. 4(h)
and 4(f), with respectively Figs. 4(c) and 4(d), unveils
the bifurcation mechanism as hybridization between the
antibonding plane pdr and pdo orbitals. The coupling is
from plane-oxygen z to Cu z2-y* and it vanishes without
the dimple. In Figs. 4(g) and 4(h) we recognize the even
and odd pdn bands split by roughly an eV and notice that
their dispersions are quite different. The reason is that
much of the interplane coupling is mediated by yttrium
so that the even and odd states couple through different
channels, e.g., Y sd and pf. The uppermost o and e bands

along (0,0)-(1,0) arise from the antibonding (02 2, Cu
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FIG. 5. Schematic plane-band wave functions at the
high-symmetry points (1,0) and (0,1), as well as their sum
and difference, which are the relevant linear combinations for
an antlferromagnetlc spin fluctuation.

2z) orbitals and the dispersions of these bands determine
the details of the bifurcation. Right at (1,0) they cannot
couple to the pdo orbitals because, as shown in Fig. 5,
these have a node through O2. At (1,0) the coupling is
only to the O3 z orbitals which are involved in the second
o and e (O3 2z, Cu zy) pdm bands. This is the origin of
the minimum at (1,0).

In Figs. 4(i) and 4(j), we finally omitted the Cu zr and
zy orbitals and retained only the O z orbitals. Since the
splitting between the o and e bands is as large between
Figs. 4(i) and 4(j) as between Figs. 4(g) and 4(h), we
realize that the O 2 orbitals rather than the Cu 2z and
2y orbitals, provide most of the interplane coupling (see
also Figs. 5 and 6 in Ref. 11). Even more than for the
Cu s-Cu s interplane hopping, the O z - O z hopping
proceeds partly via Y. The same is true for the 02 z -
03 2z intraplane hopping which gives rise to the large
splittings at the I' point. At I', there is no coupling to
the Cu 2z and 2y orbitals but at (1,0) there is, as seen
by comparison between Figs. 4(i) and (g), and between
Figs. 4(j) and 4(h). It is possible to obtain bifurcation
by adding merely the O2 and O3 z orbitals to the three
band model, thus leaving out the Cu zz and zy orbitals,
but the band then tends to be too flat between (0,0) and
(1,0).

We now write down the simplest possible tight-binding
model which reproduces Figs. 4(c) and 4(d) (using two
different sets of parameters). Since we shall force our
tlght binding model to be orthonormal (the overlap ma-
trix is the unit matrix) and to have near-neighbor inter-
actions only, agreement with Figs. 4(c) and 4(d) can only
be achieved over a limited energy range. This we choose
to be centered at the saddle points. It turns out that in
order to get an acceptable description with near-neighbor
hoppings only, we need to include the Cu s orbital ex-

plicitly. We therefore start out with a physical 8-band
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model and then later fold down the Cu s, zz, and yz or-
bitals into the tails of the neighboring oxygen orbitals,
at the expense of having to include second neighbor O-O
hoppings in the resulting 5-band Hamiltonian.

III. EIGHT AND FIVE-BAND HAMILTONIANS

Since the wave functions split in even and odd, we
formally need only consider a single plane with differ-
ent parameter values for the even and odd states. The
copper positions are R = (na,mb,0), and the oxygen
positions are Roz = R+ (1 0, tan6 o) a/2 and Ros =
'R+ (0,1,tan ;) b/2. Here, n and m take all integer val-

B s k)l
{d| €4 0 tr48z —tyqsy
(s 0 €5 boxSz  LaySy
(z| tzdSe tszSe €2 0
(y|  —tyasy teysy 0 €y
(zal toCx 0 0 0
c{=zb]  —tpey 0 0 0
(zz| 0 0 0 0
(zy| 0 0 0 0

where s, = 2sin (ak /2), ¢y = 2cos (bky/2), and so on.
We have only included hopping between nearest-neighbor
atoms, except for the hopping t,, from 02 z to O3 z.
This is the hoppping which yields the splitting of the
pdm bands at T' [Figs. 4(g)-4(j)] and which proceeds via
nearest-neighbor hopping to yttrium (and to barium).

The values of the parameters were obtained by fitting
to the odd and even LDA LMTO-ASA bands in Figs.
4(c) and 4(d). The starting values were obtained by fit-
ting individual parameters at the high-symmetry points
to the pure pdo (hybridizing with Cu s) and pdr odd
bands in Figs. 4(e) and 4(g), and to the even bands in
Figs. 4(f) and 4(h): Setting t,=t;=0 in H®, we immedi-
ately see that the eigenvalues at the I' point are ¢,, €4,
€zy €y; €zz; €2y, and,i i

_ ,
6“;6’” + \/(6‘“ > e”") +(4,,)° ~ €, £ 4t,,,

neglecting the orthorhombicity of the O z orbital energy.
The I'-point energies thus immediately provide the or-
bital energies and the O z - O zhopping integral. It takes
a bit of care to dec1de which energy is €, and which is ¢,.
To a first ‘approximation e, =€, 5o that this is the energy
of the nearly degenerate pdo band. By con31der1ng the
small-k behavior, one may then realize that e, is the k=0
limit of the band which is flat when going to (0,0) along
the [1,0] direction, and vice versa for €,. The initial values
for the remaining hopping integrals may now be deter-
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“of the uppermost pdm band [Figs.

ues and 4 is the dimpling angle, which we allow to be .
different in the a and b directions. As basis states we
first take the following eight Bloch orbitals:

&) = Y ,.m|Cuz®—y®)exp(ik-R),
|s) = 3,...|Cus)exp(ck-R),

lz) = ¥,..102z)i texp (ik - Ro2),
lv) = >, 103y)i " exp(ik-Ros),
lza) = 3,102 2)exp (ik - Ro2) ,

[zb) = Y...103 z)exp (ik - Ros),
lzz)y = 3. |Cuzz)i~lexp(tk-R),
lzy) = 3., 1Cu zy)i~texp (ik - R),

which we assume are orthonormal. The corresponding 8-
band Hamiltonian H?® is then

lza)  |zb)  |2z)  |2y)
toCo ~tpey 0 0
0 0 0 0
0 0 0 0

0 0 0o 0 (2)
€za —t22C2Cy 13 208z 0
—lz2CaCy ~ €zp 0 z,2y8y

tz,zmsa: . 0 €za

0 ts,2ySy 0 €2y

mined from the energies at (k.7/a, kym/b) =(1,0), (0,1),
and (1,1): At (1,1) the hybridization between pdo and
Cu s vanishes, provided that we neglect the orthorhom-
bicities, and we see that Stzd = (e — €g) (€ — €p) , where €
is the top of the pdo band at (1,1) and the subscript p is
z and y. The value of the O z - Cu s hopping integral t,,
is now obtained from the saddle-point energy ¢ at (1,0)
using the equation

4t3:d _ 4t§m
(e—ex)(e—€q) (es—€)(e—¢€)

which we shall derive in Sec. IV. Similarly, ¢,, may be
found from the energy at (0,1), although for the ini-
tial values we take it equal to t,,. The O2 z - Cu
zz hopping integral is found from the energy ¢ at (1 0)
4(g) or 4(h)] using
42 . = (€—€;) (€—€0), and t,,y is taken equal to
tz zz.

Starting from these initial values, the parameters were
then refined in a least squares fit with an energy depen-
dent weighting given by the derivative of a Fermi func-
tion centered at the (1,0) saddle-point energy and of half
width k1=0.2 eV. The resulting final values for the or-
bital energies were the following:

= 1, (3)

meV ¢4 € €2 €y €2a7€zp €ip=€sy
o —2308 +4844 —3199 —3082 -—1602 —3639
e —2402 43378 —3476 —3267 —2304 —3056
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where forcing €, = €,3 and ¢, = €,y did not deteriorate
the fit. The zero of energy is here the original Fermi
energy of the “all-orbital” calculation [Figs 4(a) and

4(b)] which yielded somewhat higher energies than the
7-LMTO band structure to which we are ﬁttlng We now
define the Fermi energy as the one which gives constant
energy contours for the 7-LMTO calculation most similar
to the (0,0) and (e,m/c) contours in the left part of Fig.
2. This yields ep = —417.5 meV.

The half difference between two orbital energies
(€2 — €§) /2 = t§ is the effective interplanar (or perpen-
dicular) hopping integral for orbital |7) . As expected, it
is particularly large (~733 meV) for Cu s - Cu s hopping,
and sizable for O z - O z hopping (~351 meV). For the
effective Cu 2z - Cu zr and 2y interplanar hopping in-
tegrals we find a surprisingly large, negative value (-292
meV) which we ascribe to the hopping through yttrium.

The final values for the in-plane hopping integrals were:

meV  i.4 tyd tee Loy lzz tzze tz,zy ta &
o 1576 1556 2024 2006 120 829 831 228 223
e 1599 1588 2582 2517 12 543 524 267 249

and the reason why the hopping integrals in the a direc-
tion are usually a bit larger than in the b direction is that
b/a ~1.017. In fact, the orthorhombicity of the hopping
integrals is considerably smaller than expected from the

canonical scaling law: ty (a/b)H'l *1 which yields 1.03
and 1.07 for sp and pd hopping, respectively.

The hoppings t, and t, from an oxygen z to the Cu
22-3% orbital vanish for & flat plane and we expect them
to behave like

t, x a *sind, and i x b~*sinéy, (4)
as a function of the appropriate dimpling angle and lat-
tice constant. Since /8, ~1.08, this expression predicts
a near cancellation of the orthorhombicity effects from
the lattice constants and from the dimpling angles. The
fitted parameter values indicate that the former effect
dominates.. In principle, there are similar hopping inte-
grals from the oxygen z and y orbitals to the Cu 2z and
2y orbitals, but we assume that they can be absorbed in
t, and tp.

The fact that the hopping integrals for the odd and
even orbitals are not identical is due to nonperpendicular
interplane hoppmg, e.g., from O2 z in one plane to Cu zz
in the other, and, in particular, to hopping via yttrium.

The bands resulting from diagonalization of the 8-band
Hamiltonian with the odd and even set of parameters are
shown in Figs. 6(c) and 6(d), respectively. The agree-
ment between these model bands and the original LDA
bands in Figs. 4(c) and 4(d) is reasonably good over
the 4 eV range shown, which indicates that our model
is physically sound. Close to the Fermi level, where the
bands were actually fitted, the agreement is of course
much better. This is illustrated in Fig. 7 which com-
pares the plane-band Fermi surface and the constant en-
ergy surfaces 30 meV away for the ab initio bands [Figs.
4(c) and 4(d)] in the left-hand side with those of the 8-

band model in the right-hand side. There is hardly a
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FIG. 6. Results of the 8-band model for the odd [left panel
(a) and (c)] and even [right panel (b) and (d)] plane bands.
In (a) and (b) the couplings ¢, and t; between the hybridized
pdo-spo bands and the pdr bands was set to zero, but not in
(c) and (d). Figures (c) and (d) model respectively Figs. 4(c)
and 4(d).

of (a) {} (b) /

S

© YV
e

(0.0)

difference. The difference is somewhat larger to the ap--
propriate cross sections (0,0) and (e,m/c) in the left-hand
side of Fig. 2 calculated with a complete basis set and
the full potential, but this is mainly due to our deliberate
neglect of chain pdw orbitals in the model. In Sec. VA,
we shall give an analytical expression for the constant
energy surfaces shown in the right-hand side of Fig. 7.

In Figs. 6(a) and 6(b) we have set t, = t;, = 0 and thus
neglected the coupling between the pdo and pdn bands.
In this sense, these two figures are appropriate for flat,
undimpled planes. The pdo bands are now _seen to have
normal k? saddle points at (1,0). Compared with Figs.
6(c) and 6(d) this exhibits the bifurcation mechanism.
Figure 6(a) is the model for the superposition of Figs.
4(e) and 4(g), and Fig. 6(b) is the model for the super-
position of Figs. 4(f) and 4(h). We see that the present
mddel does not describe the even pdm bands [Fig. 4(h)]
well; our fitting merely achieves to get the upper band
right between (0,0) and (1,0) which is what matters for
the pdo band, once t, 0,

Y , 5 Y S

r X T X

FIG. 7. FS and constant energy surfaces corresponding
to € = €r = 30 meV for YBay;CuszO», calculated with the
LMTO-ASA method and the 2x7 basis (left), and with the
8-band model equation (12) (right). The corresponding en-
ergy bands are those shown in respectively Figs. 4(c) and
4(d), and in Figs. 6(c) and 6(d).
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For certain applications, e.g., in calculations which in- _ 42,
«lude the on-site Cu Coulomb energy U, it is most con- D a(€) = m’_" ST
. venient to keep only the dominant Cu orbital, #2-3?, and (6)
hence to downfold the Cu s, 2z, and zy orbltals The re- — 2
sulting 5-band Hamiltonian then equals H® , except that Dy () = 4t5q

the s, zz, and zy rows and columns are ca.nceled and that

2
taa: '82 .
X

o
(o)) = 0 — L2n-

(a: !Hﬂ y> Lﬁ“’;smsyv,r

CUEBIN . thy 2
<y|H !y) = €y Sy
» € —€ Y

t2
(a|[H?| 20) = exa + 22,

2
(2b |H®| 2b) = e, + ELZ&S2

’
ey ¥

with € approximated by a constant, e.g., the Fermi en-
ergy. This approximation is a good one. H® thus includes
O-O nearest- and second-nearest-neighbor hoppings via
copper (plus shifts of the on-site oxygen energies).

IV. FOUR-BAND (pdo, pdr, sps) HAMILTONIAN

Next, we derive simple analytical expressions for the
pdo, pdr, and spo bands and for the constant energy
“contours (CEC’s) in (kg,k,) space, especially those of
the Fermi surface (Fig. 7). This provides a detailed un-
derstanding of the bands, the Fermi surface, and of the
nature of the saddle points. We start from H® and down-
fold the z,y, zz, and zy orbitals exactly. This produces
a “physical” 4-band Hamiltonian H* (¢) whose most rel-
evant element is the diagonal one for the pdo orbital:

‘ 2 2 42 g2
(@|HYd) = g+ fed®e  Tvay
€—€x € €y - : -

Se+{e—e)[-1 +'(L'Dq (€) + yDy (€)] -

Here, and in the following, we use

{sin? (kae/2) , sin® (k,b/2)} = (s2,52) /4 (5)

(z,y) =

as the variable for the two-dimensional Bloch vector. In
(z, y) space, the irreducible zone is mapped onto the (0]1)
square. In the expression for <d }H 4[ d) the pdo-like in-
teractions are described by the following functions of en-

ergy:

(e—ey)(e—ea)

These functions are positive and decreasing in the energy
range of interest. The equation ¢ = (d ]H 4| d) yields the

. usual 3-band model without O-O hopping: Neglecting

orthorhombicity and setting e5 = €, = €, = ¢,; we get

€ = €p+2tpq4/T + y for the antibonding pdo band, which

is the usual expression. The bottom of this band is at
(0,0), the saddle points are at (1,0) and (0,1), and the
top is at (1,1). When the energy increases from the bot-
tom, via the saddle point, to the top of the band, D ()
thus decreases from oo, via 1, to 1/2. With our param-
eter values for YBa;CuzOr, we have DC (¢p)=1.89 and
Dg (er)= 1.92 for the odd band, and D"3 (er)=1.68 and
Dg (er)= 1.78 for the even band.

We may express the diagonal element for the spo or-
bital in a similar way, i.e.,

(s|H*|s) —e=(es—€)[1 + S, (e) + S5 ()]
where the spo interactions are described by the function

42

KAl Y )

(7)

and similarly for S (¢). Note, that we have chosen the

sign such that S is positive in the range of interest.
At the Fermi energy in YBayCu3Oy, SC (ep)=1.12 and
5 (er)=1.15 for the odd band, and S¢ (er)=2.30 and
% (€r)=2.34 for the even band. This large difference is
due to the interplane hopping integral between the Cu s
orbitals. Since ¢,, > tp4, S can be larger than D. The
matrix element between the pdo and spo orbitals is

=) R0 ()
()2 (9]

and this causes the pdo band to be depressed by the
above-lying spo band, except near the r=y diagonal.

H4

~The depression is strongest at the (1,0) and (0, 1) saddle

points where, for the pure pdo band we had D = 1, and
now D =1+ S. This latter equation is in fact Eq. (3)
used for the initial parameter fit. The spo-hybridized
pdo band is the model for Figs. 4(e) and 4(f), and is
shown for our parameter values as three of the bands in
Figs. 6(a) and 6(b).

Due to the above-mentioned depression, the pdo band
approaches the top of the one-dimensional pdw bands
stretching along the (1,y) and (z,1) lines as seen in Figs.
6(a) and 6(b). The pdr bands are described by

(za |H4| 2a) — € = (€ — €2q) [~1 + 2Z, ()]

and similarly for (zb|H*| 2b) with
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Z ( ) ,, 4t3,z:c
al€) = (e — €2a) (€ — €22)°
and similarly for Z; (€). For the odd bands and at the
Fermi level in YBayCuzOy, Z2 (ep)=2Z7 (er)=0.72, while
for the even bands Z¢ (e5)=0.24 and Z¢ (e5)=0.22. This
large difference reflects the strong interplane O z- O 2
hopping and the asymmetric coupling through yttrium.
The ppm coupling seen in Figs. 4(i) and 4(j), in particular
for the odd band, is described by the matrix element

<za |H4I zb)

= —4t,,

———\/e—e,a)(e €25)
x /(1—2z)(1—y)P(e)

and the function
16t2,

PO= oy ey (9)

For YBa;Cu3Or, P°(er)=0.16 for the odd band, and
1

Hfj (e) —

t-a0-9

€dij

negligible for the even band.

The matrix element which causes saddle-point bifur-
cation when the spo depression makes the pda and pdw
bands nearly degenerate is

(za | HY d) = /(o €20) (c — eV (T —2) Ta (6],

- and analogously for (zb IH 4| d) although w1th a change

of sign. The weak interactions between the z? — y? and
the z orbitals are here described by

4t2
= (e— em) (e — ed)

T.9= - (10)

and Ty(e). At the Fermi level in YBa;Cu3Oz,
T? (e7)=0.093 and TY (¢x)=0.089 for the odd bands, and
T¢ (er)=0.076 and T¢ (er)=0.066 for the even bands.
This difference again reflects the largeness of the inter-
plane O z - O z hopping integral. '

The 4-band pdo, sdo, pdw Hamiltonian may therefore
be obtamed from

e -5

—1+zDg + yDy a’.VDasa — YV Bbsb
2vVDa8: —yvVDeSy  1+zS.+yS
i-«, 0

/0= 0

A= A=9P

0 0

1422, —/(t—-=z)(1—-y)P

—14+yZ

where we have dropped the energy argument of the potential functions D, S, Z, P, and T. This energy dependent
Hamiltonian is exactly equivalent with the 8-band Hamiltonian (2).

V. ONE-BAND HAMILTONIAN

A. Constant energy contours

The equation for the CEC’s may now be obtained by downfolding [

energy-dependent one-band Hamiltonian. The result is:

_ (4t d) —¢

" (2v/Da8a — yvDs 5) T o " .

HE (€) — €65 //(e — &) (e — €5) to an effective,

—1+ 2D, + yDy —
€ — €4

1+zS, +ySs
LO0-9Z) (1-2) T+ (L=0Z:) (1=9) Ty + (1 =) (1 =1) 2VPTT,

(1-yZ)(1-2Z) - (1-2)(1-y) P

where, again, we have dropped the energy argument of
the potential functions D, S, Z, P, and T, and the energy-
dependent one-band Hamiltonian is exactly equivalent
with the 8-band Hamiltonian (2).

The expression simplifies if we can neglect the ppm hop-
ping (P=0) which couples the (z,2z) and (z,2y) pdm bands.
In this case, the last term reduces to

(1-2)T (1-9)Ts

1—22Z, 1—yZp -(13)

- 2)
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an

f

If, in addition, we are willing to neglect the pdn-
dispersion (Z=0), this term is just )

(1-2)Ta+(1-9) T (14)

The z and y coordinates were defined in (5) and
the physical irreducible zone corresponds to the square:
(z,4)=(0,0), (1,0), (0,1), (1,1). It is thus the sin’mapping
(5) which produces the space-group symmetry of (k).
The CEC equation (12) clearly exhibits the effects of the
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various physical parameters on the band structure, as
may be realized from the following tutorial:

In the usual, tetragonal 3-band pdo model without
O-0 hopping, only D,=D, is nonzero so that the CEC

equation reduces to
C v

“1=(a+y)D. (15)

This is a set of straight lines in (z,y) space. In k-space,
it gives ak, + bky = 7 when D = 1, and this is the well-
known [11]-oriented, square Fermi contour for half filling
(in the absence of a Coulomb gap) with corners (cross-

ings in the repeated zone) at the (n/a,0) and (0,7/b)

saddle points. It is shown by the dashed lines in Fig. 1.
For D increasing beyond 1, the CEC’s are electron pock-
ets shrinking around (0, 0) and, for D decreasing from
1 to 1/2, the CEC’s. are hole pockets shrinking around
(#t/a,m/b).

If we now include the hybridization with the spo or-
bital (i.e., § > 0J, the bands become like those shown
in Figs. 4(e) and 4(f) and in Figs. 6(a) and 6(b). The
CEC'’s are given by:

1,¥ (z + y) (D — S) + 4zyDS, (16)

which are hyperbola’s in (z,y) space with [10]- and [01]-
oriented asymptotes. As long as the number of holes is
not too large, the CEC’s in k space tend to be (w/a, 7/b)-
centered hole pockets, shaped like rounded squares, but
now with [10]-[01] orientation. This is the “normal”
shape of those real YBa;CusO~ constant energy contours
whose energy is well above the saddle points, i.e., the
CEC’s (e) and (o,m/c) in Fig. 2. For the pdo — sdo

model that we are considering, the saddle points remain

at (m/a,0) and (0, /b) because, with orthogonal asymp-
totes, the hyperbola cannot touch the z or y axis. The
interaction with the above-lying spc band has pushed the
saddle-point energies down corresponding to 1 = D — S.
When the hole count is increased such that the energy
falls below the saddle points, the CEC’s become the
I-centered electron jacks. Both shapes are well-known
Fermi-energy contours in tetragonal La;CuOj,.

Next, we consider the pure pdmw bands, like the ones
shown in Fig. 6(b) for which t,, ~0 and ¢, = ¢, =0. We
therefore set all parameters, except Z, = Zp, equal to

. zero. The corresponding CEC’s,

l=xzZ and 1 =yZ,.

are two sets of straight lines running parallel with the
axes. From the bottom to the top of the pdr-bands, Z
therefore decreases._ from co.to 1. If now the top of the
(2,2z) band, which extends along the (1,y) line, comes
close to the above-lying pdo band, and this can only oc-
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cur near the (1,0) saddle point of the latter, then weak
pdo —pdr interaction introduced through a dimple of 02
can push the conduction band up by a significant amount,
except along (1,y) where the orbitals cannot mix. This
is the case described by expression (13). If sufficiently
strong, this mechanism will cause the saddle point to
move from (1,0) to (%,0). This just about occurs when
going from Figs. 6(b) to 6(d). In k space, the mirror
plane through (7/a,0) and perpendicular to [10] makes
the saddle point first extend and then bifurcate. A pre-
requisite for this mechanism is thus that the energy of
the pdo band has been depressed in energy near the sad-
dle point by the Cu s interaction, otherwise its energy

‘would have been far above the top of the (z,zz) band. In

terms of the interaction 1 parameters, this near-degeneracy
condition is D — § ~ Z, where the overbar refers to the
saddle-point energy.

If we couple the two pdn orbitals through hopping be-
tween the O2 2z and O3 z orbitals (P#0), a gap opens
at (0,0) and the dispersion along (z,0) changes consid-
erably, as seen by comparison of Figs. 6(b) and 6(a).
The saddle-point bifurcation thus depends on such de-
tails. One might believe that the most simple descrip-
tion of the situation seen in Fig. 6(a) for the odd bands
is to let the O z bands be flat, that is, to use P = 0 and
Z = 0, i.e., expression (14). This, however, makes the
02 and O3 z orbitals degenerate and will therefore have
the effect of repelling the pdo band, not only away from,
but also at (1,0) and (0,1). The tendency to bifurcation
will thus be diminished.

In general, Eq. (12) for the CEC’s is a polynomial

Az + By + Czy — Dz? — Ey?

—Fz?y — Gzy? + Ha?y? = | (17)

of up to second power in z and in y; the higher powers
drop out. Any CEC is therefore described by 8 normal-
ized coefficients. The fastest way of computing the CEC’s
is presumably to find their intersection with lines paral-
lel with z (or y) axis by writing the polynomial equation

(17) as

(-D —Fy + Hy?) 2% + (A+Cy—Gy?)z

+(~-1+By—Ey®) =0

In order to obtain the explicit expressions for the co-

-efficients in terms of the potential functions, we need to

perform the multiplications with the denominators in the
expression for (d|H?|d). The result is
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A=(Dy—~5,)(1=P)+(Za— P)+ Sa (Ta +Ty+ 2¢/PTaTy) — (Ta + 7Ty + 2\/PTaTb) ,
(D — Sb) (Zo — P) + 4DS (1 —

C=—(Da—5.)(Z—P)—
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P)"'(Zazb_P)

—5a (To+ 270 + 2/PTTy) — Sy (T + ZaTo + 2V/PTTy) + (2T, + 20T + 2V/PLLT,)

D = (Da = 84) (Za = P) + Su (Ta + ZoTy + 2y/PLT3)
— 5 (ZaTb + ZpT, + 2 V PTaTb) )

F=—(Dq~— Sa)(ZaZy,— P)+4DS (Z, — P)
H = 4DS (Z.Z — P),
l=1—-P— (T +Tb+2\/PTTb)

The expressions for B, E, and G may be obtained from those for, respectively, A, D, and F by interchange of the
subscripts a and b. Furthermore, we have made use of the definition:

4DS = D, Sy + DpSa + 24/ Do DS, Sp.

The values of these parameters at the Ferm: level are:

A B C D
o 1.255

E F G H !

1.270 5.689 0.686 0.697 4.303 4.326 3.088 0.581

e —0.136 —~0.084 15.908 0.075 0.080 3.751 3.484 0.831 0.853

for respectively the odd and even plane bands.

B. Condition for extended saddle points

The strict condition for bifurcation of the saddle point
along the (z,0) line is that the CEC touches the line at
a value £ < 1. The saddle point is extended when T = 1.

Now, the intersections with the (,0) line are given by

z= (A + /A —4DI) /2D,

and the necessary and sufficient condition for saddle-
point bifurcation along (k;,0) is therefore that there ex-
ists an energy & , for which the values T, A, and D of the
functions I (), A (e), and D (¢) satisfy

oA _Ad_ T
T B W T

The necessary and sufficient condition that the sad-
dle point is extended, is that A/2 =D =1, for the en-
ergy € = €(1,0) of the X point. Of these two equations,
D +1= A yields the energy of the X point and, in terms
of the basic interaction functions (6), (7), and (10), this
equation becomes:

Do=(145,) (1-Tp), (19)

as seen by use of Eq. (19), or directly from Eq. (12). This
simple equation (19) is the generalization of Eq. (3) to
the full 8-band model, and it shows that the energy of the
planelike band at the X point is independent of Z and P,
for instance. In order to get a feeling for the numbers, we
may compare the values for the odd interaction functions
at the Fermi energy calculated in Sec. IV with Eq. (19),

noting that the Fermi energy is less than 30 meV above
the energy of the odd plane band at the X point (see
the right part of Fig. 7). The result is that the value of
D, (ep) = 1.89 is, indeed, just slightly smaller than the
value of [1 + S, (ep)][1 — Tp (eF)] = 2.12 x 0.911 = 1.93.
We now insert Eq. (19) in the other equation (D =1)
and thus obtain an expression for the value of the O 2
- Cu z? — y? hopping integral £, which is necessary and
sufficient for the saddle point at X to be extended. This
expressmn, in terms of the interaction functions defined
in (10) (9), (8) and (6) is '

VT, = (1—Tb \/(1— 7 /D —\/ITTZ

If the value of 4/T, is smaller than that of the right-
hand side, the saddle point at X will be normal, and
if the value of /T, is larger than that of the right-
hand side, the saddle point will bifurcate away from
X. Here again, we may insert the values of the
odd interaction function at the Fermi energy. We

find that the value of /T, (er) = 0.305 is larger
than that of [1 — T (eF ]\/1 — GF)] /D (€F) -
VP (er) Ty () = 0.911,/0. 280/1. 89 — +/0.16-0.089 =
0.351 — 0.119 =.0.232. This is consistent with the fact
that this saddle point is bifurcated.

The expressions for the saddle point along the (0,%)
line are analogous to those given above with_exchange
of the subscripts a and b.. For our values of the pa-
rameters, we see from Fig. 7 that the saddle point
of .the odd plane band along (0,y) is extended and
has an energy very close to er, and slightly above
that of the Y point. As regards the energy at the

gy

(20)"’
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- Y point, we have Dy (er) = 1.92, which is, indeed,
-just slightly smaller than [1+ Sy (ep)][Ll ~ T, (ep)] =
2.15 X 0.907 = 1.95. As regards the nature of the
saddle point, we have: /Tj,(er) = 0.298, which

is larger than [1-—1T, (EE_)]_\[L: =Z‘,bﬁ,(5F_')]i_/,D,b (eF) :—

VP (er) To (e7) = 0.907,/0.280/1.92 — /0.16 - 0.093 —
0.346 — 0.122 = 0.224, and thus consistent with the fact
that the saddle point is bifurcated.

VI. A SIMPLE MATHEMATICAL MODEL FOR
THE CEC’S

The model for the CEC’s presented in the previous
section and expressed by (17) is, in our opinion, the sim-
plest possible model containing the correct single-particle
physics. For many purposes this model may, however,
seem too complicated and we can therefore not avoid
mentioning that the circle

-(1-AF+-(1-A))P=01-A)10 ~ ¢/w)’

in (z,y) space gives normal saddle points at (1,0) and
(0,1) for A < 0, extended saddle points for A = 0, and
bifurcated saddle points for A > 0. This circle is centered
at (1 —A,1~ A) and has the radius (1 — A) (1 — ¢/w)
so that it touches the axes at (1—A,0) and (0,1—A) for
€ = 0. The maximum is at (z,y) = (1 — A,1 — A) and
has energy w. When the touching points are inside the
physical square, 0 < z < 1, 0 < y < 1, the saddle
points in (kz, ky) space [see Eq. (5)] become extended or
bifurcated. Three constant energy contours of this model
with parameter values A=0.15 and € = 0 and +0.05w are
shown in Fig. 8. The similarity with the physical model
and with the full LDA calculations is striking.

The advantages of this circle in (z,y) space over the

k-space circle in Fig. 1 is that only the former describes

the CEC’s for energies away from the saddle points and
describes normal, extended, and bifurcated saddle points
with one model.

- FIG. 8. FS and constant energy surfaces in (k., ky) space
of the mathematical model presented in Sec. VI. The param-
eters were A=0.15 and ¢=0 and =+0.05w.

VII. SPIN FLUCTUATIONS

At the end, we return to Fig. 5 and comment on the
observation, mentioned in the Introduction, that in opti-
mally doped YBa;Cu3Oy, the spin fluctuations are anti-
ferromagnetic and commensurable inside each plane and
antiferromagnetic between the planes.'® For a FS with
energy 20 meV below an extended saddle point at (1,0)
and 20 meV above an extended saddle point at (0,1),

-we expect the orbitals of a spin fluctuation inside a sin-

gle plane to be (1,0)£%(0,1) as shown in the two bot-
tom right-hand panels; one orbital is for the spin-up
and the other for the spin-down electron. Note that
the intra-plane antiferromagnetism has separated the Cu
s and Cu d characters onto different sublattices. One
consequence is that the screening of the Coulomb cor-
relations among the d electrons by the s electrons is
intraatomic in the metallic state (top figure) but in-
teratomic, and hence weaker, in the antiferromagnetic
state. Consider now a double plane. The spin-up or-
bitals of spin fluctuations coupled ferromagnetically (F)
and antiferromagnetically (A) across the planes (denoted
+ and -) are given by: 2¥r/4 = [¢ (1,0) + 9 (0,1)]_ —
[%(1,0) £ (0,1)], . From the figure, one would, in the
first place, expect the F' coupling to be strongest be-
cause it lines the Cu s sublattices up on top of each
other and thus allows vertical Cu s hopping between
the planes. However, this neglects the important (02
z, Cu zz)(1,0) and (O3 2, Cu 2zy)(0,1) degrees of free-
dom whose bands in the metallic state were close in en-
ergy to the odd pdo band and which were respousible
for the bifurcation of the saddle points, away from (1,0)
and (0,1) (see Figs. 4 and 6). These pdm components
are symmetry forbidden in %(1,0) and #(0,1), but not
in 9(1,0)+%(0,1) and their coupling across the double
plane is much stronger than their coupling to the pdo
band, as we have seen. Moreover, we found the Cu 2z -
Cu 2z and Cu 2y - Cu zy couplings to be negative, pre-
sumably due to hopping through yttrium, and therefore .
to favor antiferromagnetic interplane coupling. We thus
expect the plane-oxygen z degrees of freedom to be im-
portant not only for the ground-state saddle points, but
also for the interplane coupling of the spin fluctuations.

VIII. CONCLUSION

In conclusion, we have identified plane oxygen z as
the electronic degrees of freedom responsible for the pre-
dicted and observed anomalous flatness of the saddle
points and their pinning to ez in optimally doped materi-
als. These electronic degrees of freedom are activated by
plane dimpling and they couple across double planes. For
use in future studies, we have derived appropriate tight-
binding Hamiltonians, as well as analytical expressions
for the constant-energy contours near the Fermi surface.
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